Oscillators controlled with external electric fields

Zhengyan Zhang, Hang Yuan, Yong Dou, Monica Olvera de la Cruz, Kyle J. M. Bishop

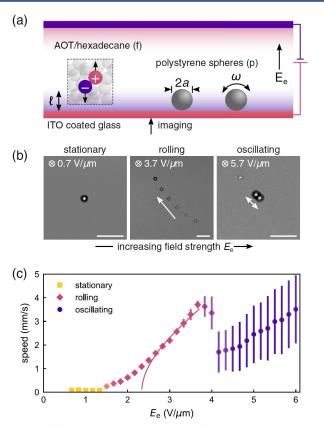


Figure. (a) Schematic illustration of the experimental setup. (b) Time-lapse microscopy images showing the three observed particle behaviors: stationary, rolling, and oscillating. (c) Time-averaged particle speed vs external field strength E_e . Markers denote the median of these mean speeds of trajectories; error bars denote the median of the corresponding standard deviations. The solid curve is a fit based on the leaky dielectric model.

Scientific Achievement

We demonstrated that micron-size particles exhibit oscillatory dynamics in nonpolar, weak electrolytes via a field-induced boundary layer which size was computed to be commensurate with the size of the particles.

Significance and Impact

This work enables the design of colloidal oscillators and opens opportunities to investigate collective behavior in active systems and to design swarming colloidal robots.

Research Details

The spontaneous oscillations of colloids under strong electric fields in proximity to a planar electrode was studied by combining the traditional Quincke rotation mechanism with new couplings introduced by the conductivity gradient within the field-induced boundary layer. The asymmetric charging within the electric boundary layers results in particles' oscillations in the absence of inertial effects.

VERI

ERSITY

Zhengyan Zhang, Hang Yuan, Yong Dou, Monica Olvera de la Cruz, Kyle J. M. Bishop,V"Quincke Oscillations of Colloids at Planar Electrodes" Phys. Rev. Lett., 126, 258001 (2021)N

Northwestern 🖆

Work was performed at Columbia University and Northwestern University

